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Abstract— The innately anonymous nature of Bitcoin, among 
numerous other cryptocurrencies, has unsurprisingly made it a 
uniquely attractive financial vehicle for criminals. With Bitcoin 
continuing to increase in social prevalence and fiscal value, the 
need to counteract the criminal activity within its peer-to-peer 
network is crucial to enforce legal accountability, limit the 
pecuniary freedom of malicious individuals, and subsequently 
improve its attractiveness for regulatory adoption. This paper 
proposes a method for detection within the Bitcoin network using 
machine learning and novel features formulated through readily 
available blockchain activity. The two datasets used for feature 
creation and model training differ in their corresponding 
criminal classifications: BitcoinAbuse provides a user-reported, 
crowdsourced dataset of generally malicious individuals (crimes 
relating to blackmail scams, darknet transactions, ransomware, 
etc.) while BitcoinHeist provides a much more extensive and 
verified dataset consisting of addresses associated exclusively 
with ransomware. A deep neural network (four hidden layers) 
and simple neural network (one hidden layer) were trained and 
validated on data with a maximum of 19 features, mainly 
achieved with self-labeled “Close Network” features, for 
detecting generally malicious and ransomware related users with 
BitcoinAbuse and BitcoinHeist, respectively. The entire system, 
titled BitCaught, accomplished a maximum accuracy of 95.50% 
in detecting users participating in ransomware related activities 
and 90.81% in detecting users engaging in generally illegal 
activities. 
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I. INTRODUCTION 
As cryptocurrencies, notably Bitcoin, become 

increasingly prevalent and economically influential, their 
innate anonymity, legitimized through the blockchain, is 
uniquely attractive for illicit activity [1]. Without ever having 
to disclose any identifying information, nefarious individuals 
can engage relatively unfettered in transactions pertaining to 
illegal behavior using Bitcoin or any of the numerous 
alternatives. With a lack of criminal accountability continuing 
to proliferate Bitcoin’s peer to peer network, there exists an 
increasingly apparent need to develop systems and 

methodologies which can accurately determine malicious 
activity, mainly corresponding to ransomware, blackmail 
scams, and darknet transactions, on the blockchain. While one 
such approach contributing to this effort is the highly effective 
deanonymization of Bitcoin wallet addresses through address 
clustering [2], this project focuses on accurately detecting 
maliciousness instead of undoing anonymity. Being able to 
determine if a given address is engaging in criminal activity, 
without any previous reports on that wallet, would be 
beneficial for a multitude of reasons. Firstly, the ability to 
accurately detect criminal behavior would give government 
bodies the necessary additional confidence for supporting 
cryptocurrencies through regulatory adoption; this 
mainstream, economic incorporation is necessary for the 
future growth and usage of Bitcoin and other cryptocurrencies. 
Secondly, a flagging system could be utilized where addresses 
suspected of criminal behavior could be flagged so that 
they’re unable to engage in future transactions or convert their 
digital assets to fiat currency. Lastly, an accurate detection 
system could be highly useful in the context of address 
clustering, where the deanonymization technique could 
additionally mark addresses within a cluster suspected of 
malicious behavior, thus incriminating all of the addresses 
within the cluster that belong to a given entity [3].  
 Bitcoin, as with all cryptocurrencies, relies on the 
blockchain in order to function: this permanent, decentralized 
ledger verifies and stores the transaction history of all users 
within the Bitcoin network. Machine learning is a uniquely 
plausible avenue of detection within the Bitcoin network due 
to the accessibility and extensiveness of transaction data 
provided by the blockchain. The information corresponding to 
each wallet address, such as total Bitcoin spent and received, 
can be used to form novel features which distinguish 
criminally related addresses from innocent ones. In order to 
accomplish a supervised learning approach, additional datasets 
which accurately categorize some addresses as nefarious (i.e. 
engaging in criminal behavior) are of course necessary; 
BitcoinAbuse.com serves as my source for generally criminal 
addresses and the BitcoinHeist dataset as my source for 
specifically ransomware associated addresses. While 



 
 

BitcoinAbuse.com contains crowdsourced, user reported 
wallet addresses, BitcoinHeist uses verified ransomware 
related addresses from previous widely adopted studies [4]. 
BitcoinHeist also contains a large number of categorized non-
malicious wallet addresses, and I use a mix of these along with 
randomly selected wallet addresses nonexistent in either 
criminal address records as my non-malicious address data 
source. 

While this work utilizes neural networks for the 
ultimate goal of accurate detection, the novelty and 
effectiveness of this work revolves around feature formulation 
derived from blockchain information. I train and test the 
models on multiple datasets with varying features and 
dimensionality in order to compare and contrast the accuracy 
resulting from those features. In this process, I also modify the 
attributes of the neural networks for higher accuracy, while 
weighing heavily the importance of training time and 
computational resource exhaustiveness. Ultimately, the end 
result system, BitCaught, seeks to reveal if criminally related 
wallet addresses reflect identifiable trends and behavior in 
comparison to their innocent peers, and more specifically if 
the subgroup of criminality in ransomware showcases more 
easily identifiable attributes than the all-encapsulating, 
generally criminal parent group. 

II. RELATED WORK 
While there are numerous pieces highlighting the usage of 

machine learning with problems in the space of cryptocurrency, 
the works most relevant to this paper can be separated into three 
categories. The first consists of research which is closely related 
to the work discussed in this paper. The second highlights 
varying approaches and implementations of address clustering 
methods followed by brief discussion of potential incorporation 
of this work into those methodologies mentioned. The third 
showcases theoretical frameworks and explanations for the 
association of criminal activity within cryptocurrency 
ecosystems. 

A. Detecting Criminal Cryptocurrency Activity 
In the area of active detection on cryptocurrency 

blockchains, four papers stand out in their relevance. While 
machine learning is by no means a requirement for this area 
of related research, each of these works utilize learning 
(supervised and unsupervised) for the purpose of criminal 
detection within cryptocurrency networks, which gives 
additional credence to the methods used in this paper.  
 Two of these papers focus on the same end goal as 
with this work, which is the accurate detection of malicious 
users. A publication shows the high accuracy achieved with 
an XGBoost classifier for identifying accounts in the 
Ethereum network associated with illegal activity. A 
relatively small dataset was used (< 5000 data points) with 
a high dimensionality of 42. The combination of the highly 
effective gradient boosting library XGBoost and a small 
dataset with abundant features yielded exceptional results 
of ~96% accuracy using the same validation method as in 
this work (10-fold cross validation). This high accuracy was 
accomplished for detecting generally malicious Ethereum 

addresses, that is users associated with crimes such as scam 
lotteries, Ponzi schemes, mirroring websites, and imitating 
other contract addresses providing tokens, among others. 
Similar to this work as well, the machine learning model 
was tasked with binary classification for whether a given 
address was related to illegal activity or not [5]. Another 
publication which utilizes an ensemble tree-based model for 
predicting illicit Bitcoin accounts from licit ones was able 
to accomplish an accuracy of 66% [6]. A common attribute 
within these works is that they also identify the most 
important features in the training and efficacy of their 
models, a research trend which, aside from these two 
papers, proved to be very helpful for my own methodologies 
involving feature formulation. 
 Other publications focus more generally on anomaly 
detection within the Bitcoin blockchain, which is somewhat 
analogous to criminally related activity. One combines both 
unsupervised and supervised learning with a mixture of 
classifiers (random forest, XGBoost, logistic regression) in 
order to specifically identify potential money laundering 
trends. Perhaps one of the biggest takeaways from this study 
is that supervised learning proved to be significantly more 
effective than unsupervised, especially in the context of the 
experiment where the learning either switches from 
unsupervised to supervised or remains unsupervised [7]. 
Another publication exclusively uses unsupervised learning 
in order to detect anomalies among user and transaction 
graphs (data derived from the blockchain) [8]. Both of these 
publications accomplished accuracies in the low to mid 80s 
(%). 

B. Deanonymization 
An incredibly vibrant area of research relating to 

cryptocurrency is that of deanonymization, specifically through 
the usage of address clustering methods. Some works use 
supervised machine learning to classify Bitcoin addresses into 
their corresponding entity “types”, with two of these studies 
accomplishing accuracies of 77% and 79% for correct cluster 
classification [9][10], while other works focus on truly 
clustering together addresses which belong to the same user. The 
latter of these works which focuses on address clustering 
accomplish high accuracies (mid 80’s to low 90’s %) using 
various address, transaction, and user relation graph approaches 
[11]; one also utilizes a combination of blockchain and off-
blockchain information in order to deanonymize the addresses 
corresponding to users [12].   
 For the deanonymization methods which focus on 
categorizing addresses into different types, BitCaught wouldn’t 
be a particularly useful addition as those types could also include 
criminal subgroups (blackmail, darknet transaction, etc.) if the 
data were available to the researchers at the time of the studies. 
However, the latter methods which specialize in assigning 
multiple addresses back to their single entity would uniquely 
benefit from the BitCaught system. Within a given a cluster of 
addresses which corresponds to a user, BitCaught could be used 
to identify if any of the given addresses reflect criminal 
behavior, which would thus incriminate the entire cluster. This 
work would be beneficial in the context of address clustering 
methods as the clusters could be additionally checked for 



 
 

malicious activity. In the potential realm of instantiating a 
flagging system across cryptocurrency networks, this approach 
would allow batches of addresses, belonging to clusters, to be 
flagged for malicious activity instead of just single addresses. 
Overall, the incorporation of this work into those 
deanonymization methods would prove efficient in uncovering 
criminally related addresses and would subsequently allow more 
swift action against the users behind those addresses. 

C. Analysis of Criminals and Cryptocurrency 
A 2019 publication confirms the association of criminal 

activity with Bitcoin through a comprehensive analysis of 
newspapers, magazines, journals, trade publications, and 
reviews covering cryptocurrency related crimes. Bitcoin, even 
in comparison to the Monero cryptocurrency which garners 
more anonymity, is the most used cryptocurrency for legal and 
illegal purposes due to user familiarity and trust. In the context 
of politics, Bitcoin is an accepted form of political donation as 
determined by the U.S. Federal Election Commission in 2014, 
however in regard to country-wide adoption, the world’s leading 
central banks are resistant due to their inability to exert 
economic control in a cryptocurrency landscape. Bitcoin has 
also been used in assisting terrorist organizations from within 
the United States, due to its security and ease of transfer [13].
 Despite Bitcoin’s popularity, lack of regulation, and inherent 
pseudo anonymity, therefore making it the cryptocurrency of 
choice by cybercriminals, law enforcement has yet to notice any 
significantly large criminal activity, with a focus on money 
laundering, occurring on its blockchain. Possible explanations 
for this are that the relevant populations are technically inept for 
its usage or lack resources, or that Bitcoin is primarily used as a 
transition currency where criminals immediately convert it to 
fiat currency upon finishing their transactions. Of course, 
another possibility is that Bitcoin is being used extensively for 
criminal activities, however law enforcement hasn’t been able to 
resolve investigative complexities for tracking this activity or 
simply aren’t looking deep enough into it. Regardless, criminal 
justice systems should exert more energy in understanding and 
conveying the potential or existing threats relating to virtual 
currencies, specifically Bitcoin [14]. 

III. METHODOLOGY 
The methodology for this work involved the datasets 

selected and used for training, the features formulated, and the 
types of machine learning models used. 

A. Data Collection 
I used two main datasets in this work, one of which contains 
wallet addresses associated with generally malicious behavior 
and the other which contains wallet addresses exclusively 
associated with ransomware. For both of these datasets, the 
only important raw information for this work were the wallet 
addresses and their corresponding malicious binary (criminal or 
not criminal). 
 

BitcoinAbuse 
 BitcoinAbuse.com is a website which allows users to report 
and classify Bitcoin wallet addresses with the following 
categories: ransomware, darknet market, bitcoin tumbler, 
blackmail scam, sextortion, and other. The original dataset was 

immense as it contained every report on the website, so the 
following was required before the dataset was to be used for this 
work: 

• Cleaning: separate reports corresponding to the same 
address simply incremented a num_reports variable for 
that address and appended the corresponding criminal 
activity of that address to a list. The mode of this list 
served as the malicious activity corresponding to that 
wallet address. This cleaning process resulted in a more 
comprehensive dataset with wallet addresses, number 
of reports, and the corresponding crime they’re accused 
of. 

• Managing Noisiness: because this data is crowd 
sourced, there is a need to eliminate wallet addresses 
which might be falsely reported as criminal. To solve 
this, only wallet addresses with more than 5 reports 
were allowed into the final dataset; this threshold was 
reached through trial and error based off of an 
acceptable size of the resulting data.  

BitcoinHeist 
 Whereas BitcoinAbuse required maintenance due to being 
crowdsourced and thus not completely dependable with the 
addresses it classifies as criminal, BitcoinHeist is a dataset 
containing ransomware addresses from multiple widely adopted 
studies (Princeton, Montreal, and Padua) [4]. Thus, this dataset 
is highly dependable and substantially larger than BitcoinAbuse 
due to it not requiring any cleaning. 

Non-malicious 

 BitcoinHeist contained numerous addresses classified as 
“white”, meaning they don’t correspond to any ransomware 
family as defined in the dataset. In order for them to be fully 
classified as non-malicious for this work, each “white” address 
used was cross-checked with the BitcoinAbuse records. To 
account for any possible bias within the “white” records, I also 
randomly selected addresses off of the Bitcoin blockchain which 
were nonexistent in either dataset. I evenly distributed these two 
types of non-malicious wallet addresses for the final non-
malicious dataset.  

B. Feature Formulation 
The features used in this project can be separated into three 
distinct categories: basic, close network, and additional. I 
define target_addr as any wallet address within the finished 
datasets used for model training and testing (with binary labels 
indicating criminality). 
 
Basic 
The basic features are foundational starting points for the data 
used for training and testing. Their core purpose is to provide a 
general picture of a given wallet address’s activity on the 
Bitcoin blockchain. They consist of the following: 
• Total_balance: the total Bitcoin balance of target_addr 

• Bitcoin_spent: the amount of Bitcoin spent by target_addr 

• Bitcoin_received: the amount of Bitcoin received by 
target_addr 



 
 

• Num_tx: the number of Bitcoin transactions that target_addr 
has been involved with 

Close Network 
The close network features were conceived with the desire to 
paint an accurate picture of the spending habits of the wallet 
addresses closest to target_addr, hence the name close network. 
I theorize these features to be useful as criminal users are more 
likely to have criminal “friends” that further reflect trends and 
behaviors not commonly prevalent with non-malicious users; 
this logic also applies vice versa for innocent users. The close 
network features consist of the following: 
• CN_sender_bitcoin_sent_avg: the average amount of 

Bitcoin sent from those addresses which target_addr has 
sent Bitcoin to 

• CN_sender_bitcoin_sent_sd: the standard deviation of 
the amount of Bitcoin sent from those addresses which 
target_addr has sent Bitcoin to 

• CN_sender_bitcoin_received_avg: the average amount 
of Bitcoin received by those addresses which 
target_addr has sent Bitcoin to 

• CN_sender_bitcoin_received_sd: the standard deviation 
of the amount of Bitcoin received by those addresses 
which target_addr has sent Bitcoin to 

• CN_sender_total_transactions_avg: the average number 
of transactions by those addresses which target_addr has 
sent Bitcoin to 

• CN_sender_total_transactions_sd: the standard 
deviation of the number of transactions by those 
addresses which target_addr has sent Bitcoin to 

• CN_sender_total_balance_avg: the average total balance 
of Bitcoin of the addresses which target_addr has sent 
Bitcoin to 

• CN_receiver_bitcoin_sent_avg: the average amount of 
Bitcoin sent from those addresses which target_addr has 
received Bitcoin from 

• CN_receiver_bitcoin_sent_sd: the standard deviation of 
the amount of Bitcoin sent from those addresses which 
target_addr has received Bitcoin from 

• CN_receiver_bitcoin_received_avg: the average amount 
of Bitcoin received by those addresses which 
target_addr has received Bitcoin from 

• CN_receiver_bitcoin_received_sd: the standard 
deviation of the amount of Bitcoin received by those 
addresses which target_addr has received Bitcoin from 

• CN_receiver_total_transactions_avg: the average 
number of transactions by those addresses which 
target_addr has received Bitcoin from 

• CN_receiver_total_transactions_sd: the standard 
deviation of the number of transactions by those 
addresses which target_addr has received Bitcoin from 

• CN_receiver_total_balance_avg: the average total 
balance of Bitcoin of the addresses which target_addr 
has received Bitcoin from 

 
 

Additional 
These features were exclusively influenced by a paper in 
which the authors sought to accurately classify Bitcoin 
addresses, with a notable innovation being their usage of 
temporal data attributes called “Moments” in the training and 
testing of their learning models [15]. The additional features 
are derived from the section in their paper where the most 
important, or heavily weighed, attributes determined by their 
model are revealed ranked; these features consist of the first 
four fields in those rankings: 
• F_tx: transaction frequency, measured as the average 

number of transactions involving target_addr from the 
day of the first transaction to the day of data recording 

• N_inputs_spent_avg: the average number of input 
addresses in spent transactions by target_addr 
(transactions where target_addr is sending Bitcoin) 

• N_outputs_spent_avg: the average number of output 
addresses in spent transactions by target_addr 

• N_received_tx: the number of received transactions by 
target_addr (transactions where users send Bitcoin to 
target_addr) 

Due to issues with accurate calculation of the latter three 
additional features, only transaction frequency ended up being 
included in the datasets for testing and analysis. 

C. Supervised Learning Algorithms 
The type of data being used in this work is complex in nature 

as it relates to cryptocurrency activity, a not entirely well 
understood area of data, thus algorithms immediately ruled out 
were decision trees, linear regressions, logistic regressions, 
naïve Bayes, and nearest neighbor. A SVM (support vector 
machine) was considered, however the high dimensionality of 
the data would most likely lead to suboptimal results in 
comparison to neural networks which can more accurately map 
complex features to the correct output. Thus, the supervised 
learning models determined for usage were neural networks 
(multi-layer perceptron), one deep (four hidden layers) and one 
simple (one hidden layer). The following are attributes of the 
model: 

Deep Neural Network 

• Input Layer: accepts input data with varying 
dimensionality determined by features. The number of 
neurons in this layer is equivalent to the dimensionality 
of the data. 

• Hidden Layers: four hidden layers are used with 
decreasing neurons in each layer so as to filter out the 
less relevant inferred features in each layer. The number 
of neurons was determined through trial and error in 
recording accuracy, with the layers holding 100, 50, 25, 
and 12 neurons, respectively for 19 and 18-dimensional 
data (basic, close network, and transaction frequency 
features vs. basic and close network features), and 50, 
40, 25, and 10 neurons for 4-dimensional data (basic 
features only).  

• Activation Function: Sigmoid as shown in (1). Sigmoid 
is uniquely useful for binary classification problems 
since it normalizes neuron weights and assigns the 



 
 

output a probability that is mapped to either 1 or 0. 
Except for the input layer, Sigmoid activation is used at 
every layer of the network. 

• Output Layer: the output layer has one neuron for the 
binary output of the program, indicating whether the 
inputted wallet address reflects criminal activity or not.  

Another multi-layer perceptron was used for comparison as it’s 
been remarked that one hidden layer is enough to solve a vast 
majority of complex learning problems [16]: 

Neural Network 

• Hidden Layers: only one hidden layer is used which has 
200 neurons for 19-dimensional data (basic, close 
network, and transaction frequency features), 175 
neurons for 18-dimensional data (close network and 
basic features), and 50 neurons for 4-dimensional data 
(only basic features). This number of neurons was 
determined through trial and error in accuracy tests. 

All other attributes of the neural network are the same as with 
the deep neural network. 

 S(x) =1 / (1 + e-x) (1) 

IV. IMPLEMENTATION 
The following is a breakdown of the separate files, 

technologies, and sequential data aggregation approach used in 
this work to ensure the previously outlined methodology was 
fulfilled as intended. 

A. Data Collection 
• BlockCypher API: used to retrieve all the necessary 

blockchain information for calculating the basic, close 
network, and additional features. I registered three 
different email addresses with the service in order to use 
15 tokens, with each account being allowed a maximum 
of 2000 requests per day. Thus, this API freely allowed 
me to make 6000 requests per day. 

• MaliciousCSV.py: cleaned and managed noisiness within 
the raw BitcoinAbuse dataset, as outlined in III. 
Methodology, A. After this was finished and the 
remaining addresses were stored in a dictionary 
(hashmap), the addresses were iterated through with each 
address being used in a BlockCypher API request to 
retrieve basic features. A row with the wallet address, 
basic features, and criminal binary were then stored in a 
spreadsheet whose title specified the data as “filtered”. 
The data cleaned, fetched, and stored by this file 
exclusively relates to BitcoinAbuse, which are the wallet 
addresses associated with generally malicious activity. 

• NonMaliciousCSV.py: retrieved and stored basic feature 
data points for non-malicious wallet addresses both 
randomly selected off of the Bitcoin blockchain (and 
checked for absence within the malicious datasets) as 
well as from the BitcoinHeist dataset (classified as 
“white” addresses). 

• JoinBitcoinHeist.py: same function as MaliciousCSV.py 
except for the BitcoinHeist dataset; no cleaning or 
noisiness management was needed. The data fetched and 
stored by this file exclusively relates to BitcoinHeist, 
which are the wallet addresses associated with generally 
malicious activity. 

• CloseNetworkAggregation.py: used the BlockCypher 
API to fetch the data necessary to calculate the close 
network features; the close network features were then 
appended to the basic features already existing for 
generally malicious, ransomware related, and non-
malicious addresses. 

• AdditionalStatsAggregation.py: used the BlockCypher 
API to fetch the data necessary to calculate the 
transaction frequency additional feature; this was 
appended to the close network and basic features already 
existing for generally malicious, ransomware related, 
and non-malicious addresses. 

• BlockchainInfoStatsAggregation.py: used the open 
Bitcoin blockchain API to fetch and calculate the 
remaining additional features; this file is unfinished as it 
does not accurately compute these features. Because of 
this, the transaction frequency is the only additional 
feature included in the results and analysis. 

The most notable takeaway from the data collection 
implementation is that datasets with more features were built on 
top of one another. First, the basic features were retrieved and 
stored for a set of addresses; then, close network features were 
retrieved for the same addresses and appended onto the 
preexisting basic features. Finally, additional features were 
appended onto all of the other features already existing. This 
structure allowed easy testing and comparison between different 
features for the varying datasets.  

B. Machine Learning 
The Tensorflow Keras API was used to build, compile, train, 
and validate both supervised learning models used in this 
project. The scikit-learn library was used for cross validation 
and Matplotlib was used for graphs showing model 
performance over time. 
 

• MaliciousModel.py: implemented, trained, and validated 
a neural network with one hidden layer. 

• MaliciousModelDeep.py: implemented, trained, and 
validated a deep neural network with four hidden layers 

For collecting results on varying data sources, the dimensions 
within the files were changed as were the corresponding neurons 
in the hidden layers.  

V. RESULTS 
All results in the Figures and Tables section were obtained 

using ten-fold cross validation, in which the dataset being used 
is split into ten different clusters, of which nine are used to train 
the model on and the remaining one is used for validation. This 
process is repeated ten times and the average of the ten sessions 
is recorded along with the standard deviation. In the 



 
 

Performance section, the graphs represent a training / validation 
split of 80 / 20 (%) over 80 epochs with a batch size of 20. 

A. Performance 
The following figures highlight accuracy and loss trends of the 
two supervised learning models on varying datasets. Figure 7 
reflects a deep neural network with increased neurons in the 
following order of hidden layers: 200, 100, 50, 25.  

Fig. 1. Neural Network on 19-dimensional data, BitcoinHeist 

Fig. 2. Deep Neural Network on 19-dimensional data, BitcoinHeist 

Fig. 3. Neural Network on 18-dimensional data, BitcoinAbuse 

Fig. 4. Deep Neural Network on 18-dimensional data, BitcoinAbuse 

Fig. 5. Neural Network on 4-dimensional data, BitcoinAbuse 

Fig. 6. Deep Neural Network on 4-dimensional data, BitcoinAbuse 

Fig. 7. Deep Neural Network on 19-dimensional data, increased neurons, 
BitcoinHeist 

B. Figures and Tables 

TABLE I.  NEURAL NETWORK, ONE HIDDEN LAYER WITH 50, 175, AND 
200 NEURONS FOR BASIC, CLOSE NETWORK, AND ADDITIONAL FEATURES 

 
Data Source, 

Features 
Number of 
Data Points 

Distribution of 
Malicious / 

Non-malicious 
(%) 

Average 
Accuracy 

(%) 

Standard 
Deviation 
Accuracy 

(%) 

BitcoinHeist, 
Basic (4-dim) 

14,490 23.6 / 76.4 91.19 1.03 

BitcoinHeist, 
Close Network 
(18-dim) 

14,054 26.6 / 73.4 94.03 0.30 

BitcoinHeist, 
TX Frequency 
(19-dim) 

10,139 27.7 / 72.3 95.75 0.74 

BitcoinAbuse, 
Basic (4-dim) 6,150 28.5 / 71.5 90.31 0.63 

BitcoinAbuse, 
Close Network 
(18-dim) 

4,073 26.3 / 73.7 88.56 1.94 

 

 

 

 

 

 

 



 
 

TABLE II.  DEEP NEURAL NETWORK, FOUR HIDDEN LAYERS WITH 100, 
50, 25, AND 12 NEURONS FOR CLOSE NETWORK AND ADDITIONAL FEATURES / 

50, 40, 25, AND 10 NEURONS FOR BASIC FEATURES 

 

VI. ANALYSIS 

A. Performance 
 The neural network and deep neural network reflected 
similar training, validation, and loss trends across the varying 
datasets. With BitcoinHeist-derived 19-dimensional data, 
consisting of basic, close network, and transaction frequency 
features, both models reached similarly high levels of training 
and validation accuracy, with the two lines remaining close to 
each other through the 80 epochs as in Figures 1 and 2. The 
models both reflected worse results with the BitcoinAbuse-
derived 18-dimensional data, consisting of basic and close 
network features, as seen in Figures 3 and 4; a notable difference 
in performance between BitcoinAbuse and BitcoinHeist is the 
substantial gap between training and validation accuracy during 
the later epochs. The difference in loss between training and 
validation also increased going from BitcoinHeist to 
BitcoinAbuse (Figure 1 to Figure 3). When the models were 
fitted and tested against BitcoinAbuse-derived basic features (4-
dimensional), the trends of training and validation accuracy 
were significantly smoother: the two accuracies also stayed 
significantly closer together over the epochs than with the higher 
dimensionality BitcoinAbuse data, as seen in Figures 5 and 6. 
The deep neural network also yielded significantly steeper 
jumps in accuracy and loss than with the simple neural network 
(Figure 6).     
 The most interesting attribute of Figures 5 and 6, however, 
is that validation accuracy always remained higher than training 
accuracy and validation loss always remained lower than 
training loss. This doesn’t occur in any of the other scenarios 
and is most likely due to the fixed training / validation split of 
80 / 20 (%). If the training and validation were randomized 
across the epochs, then this most likely wouldn’t have occurred; 
none of the other figures reflect this as the other datasets were, 
by chance, not organized in such a way to allow it. While these 
graphs were partially due to issues in the dataset distribution, 
Figures 5 and 6 are provide additional justification for using a k-
fold cross validation for the true results in this work, as those 

results reflect performance of the models outside of one set of 
test data. Figure 7 shows that a deep neural network worsens the 
accuracy and loss on 19-dimensional BitcoinHeist data, with the 
gap between lines increasing over the epochs. Lastly, a notable 
observation was that the neural network trained ~17% faster 
than the deep neural network, indicating that the simple neural 
network should be preferred over the deep neural network if they 
yield similar accuracies as it requires significantly decreased 
training time. 

B. Cross Validation Results 
 The two learning models accomplished similar efficacy 
across the varying datasets and features, with the most notable 
result for both models occurring with the highest dimensionality 
BitcoinHeist data. Both models accomplished over 95% 
accuracy in detecting whether Bitcoin wallet addresses 
corresponded to ransomware related or innocent users, with the 
highest accuracy of 95.75% being achieved using the simple 
neural network, as seen in Table I. The highest accuracy 
achieved for classifying generally malicious Bitcoin wallet 
addresses from the BitcoinAbuse dataset was 90.31% also using 
the simple neural network, however only with basic features 
involved. When close network features were added to the 
BitcoinAbuse dataset, the accuracy for detecting criminally 
related wallet addresses actually decreased for both supervised 
models. The opposite was true for the BitcoinHeist dataset, as 
the accuracy was positively correlated with the number of 
features included. The highest standard deviation within the 
cross-validation process occurred in the same dataset, 
BitcoinAbuse with close network features, for both models, 
bolded in both Tables I and II. Additionally, not reflected in 
these tables is the training time of the two models, however the 
simple neural network trained and validated noticeably quicker 
than that of the deep neural network. Despite this, both models 
trained slowly with the first two BitcoinHeist datasets as those 
files contained the most data points.   
 The distribution of wallet addresses reflecting malicious 
activity and wallet addresses reflecting non-malicious activity 
was similar across all of the datasets, and this was by design. 
Different distributions of addresses were tested in additional 
datasets and the accuracy consistently worsened as the 
distribution approached 50 / 50 (%). The accuracies were also 
worse when including less criminally related addresses in the 
datasets, thus the distributions determined to be optimal are 
reflected in the tables as mid to high 20’s / low to mid 70’s (%). 
As for data point density, the number of data points decreased 
among the sets for two main reasons: calculating and appending 
features required more time to amalgamate the data from APIs, 
and the BitcoinAbuse dataset simply had less criminally related 
addresses to work with. Not reflected in either table are the 
results of a perceptron (neural network with no hidden layers) 
and supper vector machine on the datasets; overall, both 
supervised learning models achieved significantly higher 
accuracies than the perceptron and support vector machine for 
all datasets. The resulting averages and standard deviations from 
these other models were based on rudimentary datasets, however 
they performed worse than the deep and simple neural networks 
to such an extent that they’d serve little purpose in being retested 
on final datasets. 

 
Data Source, 

Features 
Number of 
Data Points 

Distribution of 
Malicious / 

Non-malicious 
(%) 

Average 
Accuracy 

(%) 

Standard 
Deviation 
Accuracy 

(%) 

BitcoinHeist, 
Basic (4-dim) 

14,490 23.6 / 76.4 91.59 0.46 

BitcoinHeist, 
Close Network 
(18-dim) 

14,054 26.6 / 73.4 94.54 0.48 

BitcoinHeist, 
TX Frequency 
(19-dim) 

10,139 27.7 / 72.3 95.11 0.69 

BitcoinAbuse, 
Basic (4-dim) 6,150 28.5 / 71.5 89.89 0.82 

BitcoinAbuse, 
Close Network 
(18-dim) 

4,073 26.3 / 73.7 88.26 1.74 



 
 

VII. DISCUSSION AND FUTURE WORK 
Both models returned worse results for the 

BitcoinAbuse dataset, and this was likely partially due to the 
lesser number of data points available in comparison to that of 
BitcoinHeist. Another potential explanation is that the 
crowdsourced data from BitcoinAbuse is more susceptible to 
false positives in terms of maliciousness as opposed to the 
verified ransomware addresses from BitcoinHeist, even with 
managed noisiness. However, a more intuitive explanation for 
the worse accuracy is that generally malicious activity reflects 
less discernible trends and behavior than that of specific 
ransomware related activity. Ransomware is a subgroup of the 
criminal wallet addresses included in the BitcoinAbuse dataset, 
among other crimes like blackmail scams and darknet 
transactions, thus the criminal activity reflected through these 
users’ blockchain activity is generalized across multiple 
different areas of illegality. With BitcoinHeist, however, the 
criminal users to be detected are specifically engaged in 
ransomware, thus this criminal subgroup is more likely to 
reflect more definitive and identifiable trends in blockchain 
behavior than with general illicit activity.  

Another notable result from cross-validation was the 
reasonably high accuracy accomplished with basic features for 
generally criminal addresses (~90%), showing that malicious 
users can be discerned through simple traits. However, these 
traits aren’t dependable in the long run as users can easily 
change their spending habits to go against the data the model is 
trained on. The close network features assist in combatting this 
issue as they provide the supervised learning model with a 
cohesive picture of the spending habits of those addresses 
closest to a given address, which is information not easily 
changeable by a criminal user. When the close network features 
were appended to the BitcoinAbuse data points, both models 
performed worse in detecting the criminally related wallet 
addresses, which is consistent with intuition as additional 
information further separates the various criminally related 
addresses from one another and thus the overall behavior of that 
group of criminals. Also in line with intuition is the substantial 
increase in accuracy with the addition of the close network 
features in the BitcoinHeist data (~3%), as the extra information 
further refined the trends existing among ransomware related 
wallet addresses. Perhaps the most significant attribute of the 
BitcoinHeist dataset was the transaction frequency feature, as it 
drastically increased the accuracy of both models (~0.6% - 
~1.75%) while only increasing the dimensionality by one. 

In comparing the accuracy accomplished by the two 
models, the simple neural network performed better or similarly 
to the deep neural network while also sustaining a shorter 
training time due to its lesser number of hidden layers. Both the 
number of epochs (80) and the batch size (20) led the models to 
train fast and accomplish good accuracies, with increased 
epochs and decreased batch sizes resulting in marginally 
increased accuracies but significantly worse training times. In 
the future, however, I’d like to formally record the accuracies 
resulting from altering the epochs and batch sizes as well as 
their corresponding training times for quantitative data to 
reference. Additionally, I only managed to append the close 

network features to the BitcoinAbuse dataset, and while they 
worsened the models’ performances, I’d like to expand the 
BitcoinAbuse close network features dataset in the future to be 
comparable to that of the BitcoinAbuse basic features dataset to 
allow for better accuracy comparisons. Furthermore, being able 
to accurately calculate and append the additional features not 
including the transaction frequency would be helpful for further 
analysis of the models’ efficacies and the impact of those 
features. More generally, further data collection would be 
highly beneficial for future experimentation, with a target of 
~20,000 data points for the BitcoinHeist sets and ~8,000 for the 
BitcoinAbuse sets. 
 Outside of data collection, I’d also like to generalize 
this work to a wider variety of cryptocurrencies, specifically 
Monero which provides even more anonymity than Bitcoin. 
Formal conceptualization of a theoretical framework for 
cryptocurrency that utilizes flagging in partnership with 
BitCaught would also be beneficial to highlight the potential 
benefits and downsides of such a system. Lastly, in the future I 
believe live data collection, involving using BitCaught on all 
Bitcoin transactions within a 24-hour period to see what 
percentage of addresses it deems ransomware related and 
generally malicious in a given day, would be highly useful in 
determining whether BitCaught identifies more or less criminal 
activity than is expected on the Bitcoin blockchain, as measured 
by other studies. 

VIII. CONCLUSION 
Bitcoin continues to be used every day across the 

world, and as it grows in popularity as well as monetary value, 
the need for criminal accountability within its network becomes 
increasingly apparent. BitCaught is not a final solution to this 
problem, as no cybersecurity solution ever is, however it’s a 
useful stepping stone towards enforcing legality in Bitcoin’s 
rapidly growing ecosystem. This work provides useful insight 
into the detectability of users engaging in ransomware as well 
as those engaging in generally illicit activities. More 
importantly, however, BitCaught is able to accurately detect 
nefarious individuals participating in ransomware schemes 
with accuracy greater than 95%. In the future, BitCaught will 
hopefully evolve to be effective in a more generic criminal 
landscape, however the accurate detection it currently provides 
on ransomware related wallet addresses is highly beneficial as 
ransomware remains a prevalent issue for organizations, 
corporations, and individuals alike, especially with 
cryptocurrencies such as Bitcoin involved.   
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APPENDIX 
Below is a list of all of the technologies and libraries used in 
this work. 

• Python 3 for all code files 

• Tensorflow with Keras API for building, compiling, 
training, and validating the two supervised learning 
models 

• Scikit-learn library for cross validation 

• Matplotlib for performance graphs 

• Panda for reading in data from spreadsheets 

• GitHub for saving and updating BitCaught repository 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


